(1.3*(10^15))-(((1.2*(10^9))x))=0

Simple and best practice solution for (1.3*(10^15))-(((1.2*(10^9))x))=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1.3*(10^15))-(((1.2*(10^9))x))=0 equation:



(1.3(10^15))-(((1.2(10^9))x))=0
We add all the numbers together, and all the variables
-(((1.210^9)x))+57.420825906681=0
We calculate terms in parentheses: -(((1.210^9)x)), so:
((1.210^9)x)
We calculate terms in parentheses: +((1.210^9)x), so:
(1.210^9)x
We multiply parentheses
x^2
Back to the equation:
+(x^2)
Back to the equation:
-(x^2)
We add all the numbers together, and all the variables
-1x^2+57.420825906681=0
a = -1; b = 0; c = +57.420825906681;
Δ = b2-4ac
Δ = 02-4·(-1)·57.420825906681
Δ = 229.68330362672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{229.68330362672}}{2*-1}=\frac{0-\sqrt{229.68330362672}}{-2} =-\frac{\sqrt{}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{229.68330362672}}{2*-1}=\frac{0+\sqrt{229.68330362672}}{-2} =\frac{\sqrt{}}{-2} $

See similar equations:

| 17=2m-5+7m+2m | | z^2-0.4z-0.2=0 | | 0.45x-27=45 | | x=36/45 | | 22=8m-4= | | 2/3(3m-6)=5-m | | -3x+7-3x=-5 | | 9+2x=18= | | 5y=13+2 | | 7y-1=55= | | 3x+5=17= | | Y^2+x+2=0 | | 5y+3=10y-4 | | 6x-9=4x-9 | | f=21+14(4) | | (8x-10)+(3x+90)=180 | | 20x-5=-5 | | (2x+9)+7=-3 | | (2y+5)=-3y | | 6m-m=56(6m-10) | | y=46 | | 6-3m=9 | | 4t-32=24 | | (18+x)2=5x2 | | (4h-2)=-2(h-3) | | 3(x+2)=-6+3x | | -×=2y | | 10(x-3)=20x | | (14.5+p)÷4=20 | | 4(x-3)=x-24+3x | | -3r-3r+16=23-5r | | 3x+8=8-2x |

Equations solver categories